Engineers devise a modular system to produce efficient, scalable aquabots

Underwater structures that can change their shapes dynamically, the way fish do, push through water much more efficiently than conventional rigid hulls. But constructing deformable devices that can change the curve of their body shapes while maintaining a smooth profile is a long and difficult process. MIT’s RoboTuna, for example, was composed of about 3,000 different parts and took about two years to design and build. Now, researchers at MIT and their colleagues — including one from the original RoboTuna team — have come up with an innovative approach to…

This content is for Member members only.
Log In Register